Working platforms for tracked plant – BR 470 guideline and a revised approach to stabilisation design with multiaxial hexagonal geogrids

M. J. D. Dobie, A. S. Lees, J. Buckley
Tensar International Limited (Jakarta, Nicosia & Gold Coast)
R. Bhavsar
Geofabrics Australasia Pty Ltd (Melbourne)

Introduction

- Working platforms are frequently required on construction sites
- To support heavy machines for installation of piles or vertical drains
- Short term use so considered as temporary
Introduction

- In some cases working platforms are used for longer term purposes
- For example as working platforms in fabrication yards
- This image shows such an example

Introduction

- In some cases working platforms are used for longer term purposes
- For example as working platforms in fabrication yards
- This image shows such an example
- Crane loadings can be very heavy
Introduction

- In some cases working platforms are used for longer term purposes
- For example as working platforms in fabrication yards
- This image shows such an example
- Crane loadings can be very heavy
- This crane was driven off the treated platform area resulting in fatalities

Introduction

- Working platforms can and should be designed as engineered structures
- This is the aim of this paper and presentation
BR 470: introduction

- BR 470 published by BRE (UK) in 2004: “Working platforms for tracked plant”
- A good practice guide to the design, installation, maintenance and repair of ground-supported working platforms for tracked plant
- Includes general recommendations and a detailed method of calculation
- Then in 2011 BRE published a "review seven years on" covering the use of structural geosynthetic reinforcement
- Evidence of some use of BR 470 in ANZ

BR 470: targets and limitations

- Principal target is to promote safety
- Working platform should be appreciably stronger than the subgrade
- Subgrade: $s_u > 20$ kPa and $s_u < 80$ kPa
- Platform thickness: $D > 0.5W$ or 300mm and $D < 1.5W$
- Load factors:

<table>
<thead>
<tr>
<th>Load case</th>
<th>Platform required?</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Case 1 (unlikely to recover)</td>
<td>2.0</td>
</tr>
<tr>
<td>Case 2 (likely to recover)</td>
<td>1.5</td>
</tr>
</tbody>
</table>
BR 470: method of calculation

Applied load, q

![Diagram showing the method of calculation](image)

\[R = s_u N_c s_c + \frac{\gamma_p K_p D^2}{W} \tan \delta \times s_p + \frac{2T_{ps_p}}{W} \]

BR 470: method of calculation with geosynthetic reinforcement

Applied load, q

![Diagram showing the method of calculation with geosynthetic reinforcement](image)

\[R = s_u N_c s_c + \frac{\gamma_p K_p D^2}{W} \tan \delta \times s_p + \frac{2T_{ps_p}}{W} \]
BR 470: development

- Basic guidelines are satisfactory
- Some concerns with method of calculation
- Does not take account of geogrids which create stabilisation of the platform material

ISO 10318:2018 definitions and pictograms

- **Stabilisation**
 improvement of the mechanical behaviour of an unbound granular material by including one or more geosynthetic layers such that deformation under applied loads is reduced by minimising movements of the unbound granular material

- **Reinforcement**
 use of the stress-strain behaviour of a geosynthetic material to improve the mechanical properties of soil or other construction materials
ISO 10318:2018 definitions and pictograms

- Stabilisation (geogrid operating at low strain SLS)
 improvement of the mechanical behaviour of an unbound granular material by including one or more geosynthetic layers such that deformation under applied loads is reduced by minimising movements of the unbound granular material

- Reinforcement (geosynthetic operating at relatively high strain ULS - BR 470)
 use of the stress-strain behaviour of a geosynthetic material to improve the mechanical properties of soil or other construction materials

Bearing capacity: granular layer over soft clay
Understand better the load transfer mechanism

- Co-author Dr Andrew Lees goes back to basics to tackle the problem
- Model foundation test from 1980’s
Bearing capacity: granular layer over soft clay
Understand better the load transfer mechanism

- Without geogrid
- Narrow punching shear
- Relatively shallow shear surfaces

Bearing capacity: granular layer over soft clay
Understand better the load transfer mechanism

- With geogrid
- Much smaller deformation at same load SLS
- Wider punching shear
Bearing capacity: granular layer over soft clay

Understand better the load transfer mechanism

- With geogrid
- Much smaller deformation at same load SLS
- Wider punching shear
- Deeper shear surfaces at ULS

Bearing capacity: granular layer over soft clay

Effect of stabilisation on load transfer efficiency

- Granular layer without stabilisation
- Apply surface load

13th ANZ Conference on Geomechanics
Bearing capacity: granular layer over soft clay
Effect of stabilisation on load transfer efficiency

- Granular layer without stabilisation
- Apply surface load
- Creating mechanism of punching shear

Granular layer
Applied load
NON-STABILISED GRANULAR LAYER

Some surcharge transfer
Subgrade shear plane
CLAY SUBGRADE

Granular layer with stabilisation
Comparing behaviour

More surcharge transfer
Wider punching shear
Shear plane forced deeper and wider
CLAY SUBGRADE
Bearing capacity: granular layer over soft clay
Defining the load transfer efficiency T

- Based on centrifuge testing
- Relationship between surface bearing capacity (q_u) and subgrade bearing capacity (q_s) versus aspect ratio H/B
- Slope of the line is $T = \text{load transfer efficiency}$

\[q_u = q_s \]

\[T = \frac{q_u}{q_s} \]

PS is plain strain so strip load

Slope (T) is load transfer efficiency

\[su = 22 \text{ kPa (PS)} \]

Bearing capacity: granular layer over soft clay
0.5m diameter triaxial tests to establish composite behaviour

Greater ductility

Higher shear strength from stabilisation

$\sigma' = 10kPa$

$\sigma' = 43kPa$

$\sigma' = 75kPa$

\[q (kPa) \]

\[\varepsilon_a \]

[Diagram showing load vs. strain with different load levels and strain values]
Bearing capacity: granular layer over soft clay
0.5m diameter triaxial tests to establish composite behaviour

- Obtain constitutive model parameters for various granular materials without and with various types of stabilisation geogrid

Bearing capacity: granular layer over soft clay
Develop a new FEA constitutive model for the composite

- Carry out parametric study for wide variety of working platform design parameters using FEA
- Derive relationships between T and s_u for a wide range of conditions
Bearing capacity: granular layer over soft clay

Developing a new design method

- Without geogrid for strip load and square/round load
- Interpolate for intermediate cases

Bearing capacity: granular layer over soft clay

Developing a new design method

- Without geogrid for strip load and square/round load
- Interpolate for intermediate cases
- Adding mechanical stabilisation effect of “Geogrid A”
Bearing capacity: granular layer over soft clay
Verifying design method against a case study

Total load = 115t
Base area = 4m²
Pressure on base = 290 kPa
Bearing capacity of soil = 43 kPa

2 layers of Geogrid A
2.0m square slab

Extremely soft dredged silt
Compacted crushed rock (0.65m)
Compacted sand (0.9m)

B = L = 2m
H = 1.55m

Stabilised granular layer
Soft silty clay subgrade
s₀ = 7 kPa
q_u = 43 kPa
Bearing capacity: granular layer over soft clay

Verifying design method against a case study

\[\frac{q_u}{q_s} = 1 + T \frac{H}{B} \]

\[
\frac{290}{43} = 6.7 = 1 + T \frac{1.55}{2}
\]

\[\rightarrow T = 7.4 \]

Calculations

- Stabilised granular layer
- Soft silty clay subgrade
 - \(s_u = 7 \) kPa
 - \(q_u = 43 \) kPa

Bearing capacity: granular layer over soft clay

Verifying design method against a case study

Graph:

- "Geogrid A", B/L = 1
- No geogrid, B/L = 1
- "Geogrid A", B/L = 0
- No geogrid, B/L = 0
- Load test

Axes:

- \(s_u \) (kPa)
- \(T \)

Graph data points:

- Points for different cases

13th ANZ Conference on Geomechanics
Working platforms for tracked plant – BR 470 guideline and a revised approach to design using stabilisation geogrids

- Working platforms are structures which should be designed
- BR 470 provides guidelines and load factors for two load cases
- The method of calculation in BR 470 does not provide for the use of stabilisation geogrids
- This has been investigated starting with fundamental research to establish new constitutive models for the soil/geogrid composite
- This model has been used in an extensive FEA to develop a design method based on the “transfer efficiency”, T
- This is referred to as the T-value method
- The development follows the guidance of BR 470, with the objective of preserving safety, being formulated according to the geotechnical discipline and validated by well documented case studies